If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+7x-174=0
a = 2; b = 7; c = -174;
Δ = b2-4ac
Δ = 72-4·2·(-174)
Δ = 1441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{1441}}{2*2}=\frac{-7-\sqrt{1441}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{1441}}{2*2}=\frac{-7+\sqrt{1441}}{4} $
| 7-6(x-1)=7+2(7x-4) | | X+27=5x+43 | | 7(8r-3)=4r-21 | | x^2−10=15 | | 5+7x-3x=29 | | 5/4x-6/x-1=0 | | 20=10x-6(2x | | 2/5x+16=4/5x-2 | | 3x+7/4=x/8 | | 3.6=x-2.4 | | 2(4−x)=6(x+2)+3x | | 3×y-5=35 | | x2−10=15 | | -4x-10-x=25x=-7 | | 3x+3x=3x^2 | | 3/5x+7=-14 | | 3+9x=7+8x | | 2|3v=2-4|3 | | 3=6+w | | 7=21/x | | n-2.8=4.3 | | a-6=8-(9=a) | | 0.66x+2=0.33(4x+1) | | 3p²+5=32 | | F(-11)=-n | | -6(2x-1)+8=-12x+14 | | x^2-42x-135=0 | | 1-3z=-5 | | 1/2x+x-7/2=1 | | F(9)=-n | | 50+.40x=30+.50x | | -2=j/2-5 |